Dietary strategies of Pleistocene Pongo sp. and Homo erectus on Java (Indonesia)
Written by on January 17, 2023
von Koenigswald, G. H. R. Fossil hominids from the Lower Pleistocene of Java. In Report of the Eighteenth Session of the International Geological Congress (ed. Butler, A. J.) 59–61 (International Geological Congress, 1948).
Grine, F. E. & Franzen, J. L. Fossil hominid teeth from the Sangiran Dome (Java, Indonesia). Cour. Forsch. Inst. Senckenberg 171, 75–103 (1994).
Bettis, E. A. et al. Way out of Africa: Early Pleistocene paleoenvironments inhabited by Homo erectus in Sangiran, Java. J. Hum. Evol. 56, 11–24 (2009).
Google Scholar
Matsu’ura, S. et al. Age control of the first appearance datum for Javanese Homo erectus in the Sangiran area. Science 367, 210–214 (2020).
Google Scholar
Weidenreich, F. Giant early man from Java and South China. Anthropol. Pap. Am. Mus. Nat. Hist. 40, 1–134 (1945).
von Koenigswald, G. H. R. Pithecanthropus, Meganthropus and the Australopithecinae. Nature 173, 795–797 (1954).
Google Scholar
Franzen, J. L. in Ancestors: The Hard Evidence (ed. Delson, E.) 221–226 (Alan R. Liss, 1985).
Tyler, D. E. Sangiran 5, (‘Pithecanthropus dubius’), Homo erectus, ‘Meganthropus,’ or Pongo? Hum. Evol. 18, 229–241 (2003).
Google Scholar
Tyler, D. E. An examination of the taxonomic status of the fragmentary mandible Sangiran 5, (Pithecanthropus dubius), Homo erectus, ‘Meganthropus’, or Pongo? Quat. Int. 117, 125–130 (2004).
Google Scholar
Zanolli, C. et al. Evidence for increased hominid diversity in the Early to Middle Pleistocene of Indonesia. Nat. Ecol. Evol. 3, 755–764 (2019).
Google Scholar
Balter, V., Braga, J., Télouk, P. & Thackeray, J. F. Evidence for dietary change but not landscape use in South African early hominins. Nature 489, 558–560 (2012).
Google Scholar
Joannes-Boyau, R. et al. Elemental signatures of Australopithecus africanus teeth reveal seasonal dietary stress. Nature 572, 112–115 (2019).
Google Scholar
Cerling, T. E. et al. Stable isotope-based diet reconstructions of Turkana Basin hominins. Proc. Natl Acad. Sci. USA 110, 10501–10506 (2013).
Google Scholar
Lüdecke, T. et al. Dietary versatility of Early Pleistocene hominins. Proc. Natl Acad. Sci. USA 115, 13330–13335 (2018).
Google Scholar
Wynn, J. G. et al. Isotopic evidence for the timing of the dietary shift toward C4 foods in eastern African Paranthropus. Proc. Natl Acad. Sci. USA 117, 21978–21984 (2020).
Google Scholar
Smith, T. M. et al. Wintertime stress, nursing, and lead exposure in Neanderthal children. Sci. Adv. 4, 9483–9514 (2018).
Google Scholar
Nava, A. et al. Early life of Neanderthals. Proc. Natl Acad. Sci. USA 117, 28719–28726 (2020).
Google Scholar
Hoppe, K. A., Koch, P. L. & Furutani, T. T. Assessing the preservation of biogenic strontium in fossil bones and tooth enamel. Int. J. Osteoarchaeol. 13, 20–28 (2003).
Google Scholar
Hinz, E. A. & Kohn, M. J. The effect of tissue structure and soil chemistry on trace element uptake in fossils. Geochim. Cosmochim. Acta 74, 3213–3231 (2010).
Google Scholar
Bromage, T. G., Hogg, R. T., Lacruz, R. S. & Hou, C. Primate enamel evinces long period biological timing and regulation of life history. J. Theor. Biol. 305, 131–144 (2012).
Google Scholar
Lacruz, R. S., Dean, M. C., Ramirez-Rozzi, F. & Bromage, T. G. Megadontia, striae periodicity and patterns of enamel secretion in Plio-Pleistocene fossil hominins. J. Anat. 213, 148–158 (2008).
Google Scholar
Lacruz, R. S., Habelitz, S., Wright, J. T. & Paine, M. L. Dental enamel formation and implications for oral health and disease. Physiol. Rev. 97, 939–993 (2017).
Google Scholar
Dean, M. C. Tooth microstructure tracks the pace of human life-history evolution. Proc. R. Soc. B 273, 2799–2808 (2006).
Google Scholar
Smith, T. M. et al. Disentangling isolated dental remains of Asian Pleistocene hominins and pongines. PLoS ONE 13, e0204737 (2018).
Google Scholar
Müller, W. & Anczkiewicz, R. Accuracy of laser-ablation (LA)-MC-ICPMS Sr isotope analysis of (bio)apatite—a problem reassessed. J. Anal. Spectrom. 31, 259–269 (2016).
Google Scholar
Müller, W. et al. Enamel mineralization and compositional time-resolution in human teeth evaluated via histologically-defined LA-ICPMS profiles. Geochim. Cosmochim. Acta 255, 105–126 (2019).
Google Scholar
Li, Q. et al. Spatially-resolved Ca isotopic and trace element variations in human deciduous teeth record diet and physiological change. Environ. Archaeol. 27, 474–483 (2022). https://doi.org/10.1080/14614103.2020.1758988
Elias, R. W., Hirao, Y. & Patterson, C. C. The circumvention of the natural biopurification of calcium along nutrient pathways by atmospheric inputs of industrial lead. Geochim. Cosmochim. Acta 46, 2561–2580 (1982).
Google Scholar
Burton, J. H., Price, T. D. & Middleton, W. D. Correlation of bone Ba/Ca and Sr/Ca due to biological purification of calcium. J. Archaeol. Sci. 26, 609–616 (1999).
Google Scholar
Balter, V. et al. Ecological and physiological variability of Sr/Ca and Ba/Ca in mammals of West European mid-Würmian food webs. Palaeogeogr. Palaeoclimatol. Palaeoecol. 186, 127–143 (2002).
Google Scholar
Pate, F. D. Bone chemistry and paleodiet. J. Archaeol. Method Theory 1, 161–209 (1994).
Google Scholar
Kohn, M. J., Morris, J. & Olin, P. Trace element concentrations in teeth—a modern Idaho baseline with implications for archeometry, forensics, and palaeontology. J. Archaeol. Sci. 40, 1689–1699 (2013).
Google Scholar
de Vos, J. in Ancestors: The Hard Evidence (ed. Delson, E.) 215–220 (Alan R. Liss, 1985).
de Vos, J. et al. The Homo bearing deposits of Java and its ecological context. Cour. Forsch. Inst. Senckenberg 171, 129–140 (1994).
Leinders, J. J. M. et al. The age of the hominid-bearing deposits of Java: state of the art. Geol. Mijnb. 64, 167–173 (1985).
Sondaar, P. Faunal evolution and the mammalian biostratigraphy of Java. Cour. Forsch. Inst. Senckenberg 69, 219–235 (1984).
Peek, S. & Clementz, M. T. Sr/Ca and Ba/Ca variations in environmental and biological sources: a survey of marine and terrestrial systems. Geochim. Cosmochim. Acta 95, 36–52 (2012).
Google Scholar
Reynard, B. & Balter, V. Trace elements and their isotopes in bones and teeth: diet, environments, diagenesis, and dating of archeological and paleontological samples. Palaeogeogr. Palaeoclimatol. Palaeoecol. 416, 4–16 (2014).
Google Scholar
Jacques, L. et al. Implications of diagenesis for the isotopic analysis of Upper Miocene large mammalian herbivore tooth enamel from Chad. Palaeogeogr. Palaeoclimatol. Palaeoecol. 266, 200–210 (2008).
Google Scholar
Brumfitt, I. M., Chinsamy, A. & Compton, J. S. Depositional environment and bone diagenesis of the Mio/Pliocene Langebaanweg bonebed, South Africa. S. Afr. J. Geol. 116, 241–258 (2013).
Google Scholar
Decrée, S. et al. The post-mortem history of a bone revealed by its trace element signature: the case of a fossil whale rostrum. Chem. Geol. 477, 137–150 (2018).
Google Scholar
Janssen, R. et al. Tooth enamel stable isotopes of Holocene and Pleistocene fossil fauna reveal glacial and interglacial paleoenvironments of hominins in Indonesia. Quat. Sci. Rev. 144, 145–154 (2016).
Google Scholar
Blumenthal, S. A. et al. Stable isotope time-series in mammalian teeth: in situ δ18O from the innermost enamel layer. Geochim. Cosmochim. Acta 124, 223–236 (2014).
Google Scholar
Zazzo, A., Balasse, M. & Patterson, W. P. High-resolution δ13C intratooth profiles in bovine enamel: implications for mineralization pattern and isotopic attenuation. Geochim. Cosmochim. Acta 69, 3631–3642 (2005).
Google Scholar
Deutsch, D. & Pe’er, E. Development of enamel in human fetal teeth. J. Dent. Res. 61, 1543–1551 (1982).
Google Scholar
Dean, C. et al. Growth processes in teeth distinguish modern humans from Homo erectus and earlier hominins. Nature 414, 628–631 (2001).
Google Scholar
Guatelli-Steinberg, D., Ferrell, R. J. & Spence, J. Linear enamel hypoplasia as an indicator of physiological stress in great apes: reviewing the evidence in light of enamel growth variation. Am. J. Phys. Anthropol. 148, 191–204 (2012).
Google Scholar
Cerling, T. E. et al. Woody cover and hominin environments in the past 6 million years. Nature 476, 51–56 (2011).
Google Scholar
Reid, D. J. & Dean, M. C. Variation in modern human enamel formation times. J. Hum. Evol. 50, 329–346 (2006).
Google Scholar
Smith, T. M. Dental development in living and fossil orangutans. J. Hum. Evol. 94, 92–105 (2016).
Google Scholar
Schwartz, G. T., Reid, D. J. & Dean, C. Developmental aspects of sexual dimorphism in hominoid canines. Int. J. Primatol. 22, 837–860 (2001).
Google Scholar
Bonhommeau, S. et al. Eating up the world’s food web and the human trophic level. Proc. Natl Acad. Sci. USA 110, 20617–20620 (2013).
Google Scholar
Sponheimer, M. & Lee-Thorp, J. A. Enamel diagenesis at South African Australopith sites: implications for paleoecological reconstruction with trace elements. Geochim. Cosmochim. Acta 70, 1644–1654 (2006).
Google Scholar
Eltringham, S. K. in Pigs, Peccaries and Hippos (ed. Oliver, W.) 55–60 (International Union for the Conservation of Nature and Natural Resources, 1993).
Jablonski, N. G. The hippo’s tale: how the anatomy and physiology of Late Neogene Hexaprotodon shed light on Late Neogene environmental change. Quat. Int. 117, 119–123 (2004).
Google Scholar
Hendier, A. Diet Determination of Wild Pygmy Hippopotamus (Choeropsis liberiensis). MSc thesis, Univ. Neuchâtel (2019).
Klein, I. Ernährung und ökologisches Profil von Axis lydekkeri. MSc thesis, Goethe Univ. (2020).
Russon, A. E. et al. in Orangutans: Geographic Variation in Behavioral Ecology and Conservation (eds Wich, S. A. et al.) 135–156 (Oxford Univ. Press, 2009).
Kanamori, T. et al. Feeding ecology of Bornean orangutans (Pongo pygmaeus morio) in Danum Valley, Sabah, Malaysia: a 3‐year record including two mast fruitings. Am. J. Primatol. 72, 820–840 (2010).
Google Scholar
Kanamori, T., Kuze, N., Bernard, H., Malim, T. P. & Kohshima, S. Fluctuations of population density in Bornean orangutans (Pongo pygmaeus morio) related to fruit availability in the Danum Valley, Sabah, Malaysia: a 10-year record including two mast fruitings and three other peak fruitings. Primates 58, 225–235 (2017).
Google Scholar
Sémah, A.-M., Sémah B, F., Djubiantono, T. & Brasseur, B. Landscapes and hominids’ environments: changes between the Lower and the early Middle Pleistocene in Java (Indonesia). Quat. Int. 4, 451 (2009).
Sémah, A. M. & Sémah, F. The rain forest in Java through the Quaternary and its relationships with humans (adaptation, exploitation and impact on the forest). Quat. Int. 249, 120–128 (2012).
Google Scholar
Brasseur, B., Sémah, F., Sémah, A.-M. & Djubiantono, T. Approche paléopédologique de l’environnement des hominidés fossiles du dôme de Sangiran (Java central, Indonésie). Quaternaire 22, 13–34 (2011).
Smith, T. M., Austin, C., Hinde, K., Vogel, E. R. & Arora, M. Cyclical nursing patterns in wild orangutans. Sci. Adv. 3, e1601517 (2017).
Google Scholar
Humphrey, L. T. Isotopic and trace element evidence of dietary transitions in early life. Ann. Hum. Biol. 41, 348–357 (2014).
Google Scholar
Widdowson, E. M. Absorption, excretion and storage of trace elements: studies over 50 years. Food Chem. 43, 203–207 (1992).
Google Scholar
Dean, C., Le Cabec, A., Spiers, K., Zhang, Y. & Garrevoet, J. Incremental distribution of strontium and zinc in great ape and fossil hominin cementum using synchrotron X-ray fluorescence mapping. J. R. Soc. Interface 15, 20170626 (2018).
Dean, M. C., Le Cabec, A., Van Malderen, S. J. M. & Garrevoet, J. Synchrotron X-ray fluorescence imaging of strontium incorporated into the enamel and dentine of wild-shot orangutan canine teeth. Arch. Oral. Biol. 119, 104879 (2020).
Google Scholar
Pontzer, H., Raichlen, D. A., Shumaker, R. W., Ocobock, C. & Wich, S. A. Metabolic adaptation for low energy throughput in orangutans. Proc. Natl Acad. Sci. USA 107, 14048–14052 (2010).
Google Scholar
Mahaney, W. C., Hancock, R. G. V., Aufreiter, S., Milner, M. W. & Voros, J. Bornean orangutan geophagy: analysis of ingested and control soils. Environ. Geochem. Health 38, 51–64 (2016).
Google Scholar
Austin, C. et al. Uncovering system-specific stress signatures in primate teeth with multimodal imaging. Sci. Rep. 6, 18802 (2016).
Humphrey, L. T. Weaning behaviour in human evolution. Semin. Cell Dev. Biol. 21, 453–461 (2010).
Google Scholar
van Noordwijk, M. A., Willems, E. P., Utami Atmoko, S. S., Kuzawa, C. W. & van Schaik, C. P. Multi-year lactation and its consequences in Bornean orangutans (Pongo pygmaeus wurmbii). Behav. Ecol. Sociobiol. 67, 805–814 (2013).
Google Scholar
Galdikas, B. M. F. & Wood, J. W. Birth spacing patterns in humans and apes. Am. J. Phys. Anthropol. 83, 185–191 (1990).
Google Scholar
van Noordwijk, M. A. & van Schaik, C. P. Development of ecological competence in Sumatran orangutans. Am. J. Phys. Anthropol. 127, 79–94 (2005).
Google Scholar
Sugardjito, J., te Boekhorst, J. A. & van Hooff, J. A. R. A. M. Ecological constraints on the grouping of wild orangutans (Pongo pygmaeus) in the Gunung Leuser National Park, Sumatra, Indonesia. Int. J. Primatol. 8, 17–41 (1987).
Google Scholar
Wich, S. A. et al. Life history of wild Sumatran orangutans (Pongo abelii). J. Hum. Evol. 47, 385–398 (2004).
Google Scholar
Dubois, E. Palaeontologische Onderzoekingen op Java (Verslag van het Mijnwezen, 1891).
Dubois, E. Pithecanthropus erectus, Einen Menschenaehnliche Uebergangsform aus Java (G.E. Stechert (Alfred Hafner),1894).
Joordens, J. C. A. et al. Homo erectus at Trinil on Java used shells for tool production and engraving. Nature 518, 228–231 (2015).
Google Scholar
Ungar, P. S., Grine, F. E. & Teaford, M. F. Diet in early Homo: a review of the evidence and a new model of adaptive versatility. Annu. Rev. Anthropol. 35, 209–228 (2006).
Google Scholar
Tausch, J. A New Method for Examining Hominin Dietary Strategy: Occlusal Microwear Vector Analysis of the Sangiran 7 Homo erectus Molars (Goethe Univ., 2011).
Tausch, J., Kullmer, O. & Bromage, T. G. A new method for determining the 3D spatial orientation of molar microwear. Scanning 37, 446–457 (2015).
Google Scholar
Caropreso, S. et al. Thin sections for hard tissue histology: a new procedure. J. Microsc. 199, 244–247 (2000).
Google Scholar
Bondioli, L., Nava, A., Rossi, P. F. & Sperduti, A. Diet and health in central-southern Italy during the Roman Imperial time. Acta IMEKO 5, 19–25 (2016).
Google Scholar
Müller, W., Shelley, M., Miller, P. & Broude, S. Initial performance metrics of a new custom-designed ArF excimer LA-ICPMS system coupled to a two-volume laser-ablation cell. J. Anal. At. Spectrom. 24, 209–214 (2009).
Google Scholar
Evans, D. & Müller, W. LA-ICPMS elemental imaging of complex discontinuous carbonates: an example using large benthic foraminifera. J. Anal. At. Spectrom. 28, 1039–1044 (2013).
Google Scholar
Longerich, H. P., Jackson, S. E. & Günther, D. Laser ablation inductively coupled plasma mass spectrometric transient signal data acquisition and analyte concentration calculation. J. Anal. At. Spectrom. 11, 899–904 (1996).
Google Scholar
Retief, D. H., Cleaton-Jones, P. E., Turkstra, J. & De Wet, W. J. The quantitative analysis of sixteen elements in normal human enamel and dentine by neutron activation analysis and high-resolution gamma-spectrometry. Arch. Oral. Biol. 16, 1257–1267 (1971).
Google Scholar
Lacruz, R. S. Enamel: molecular identity of its transepithelial ion transport system. Cell Calcium 65, 1–7 (2017).
Google Scholar
Klemme, S. et al. Synthesis and preliminary characterisation of new silicate, phosphate and titanite reference glasses. Geostand. Geoanal. Res. 32, 39–54 (2008).
Google Scholar
Jochum, K. P. et al. Accurate trace element analysis of speleothems and biogenic calcium carbonates by LA-ICP-MS. Chem. Geol. 318–319, 31–44 (2012).
Google Scholar
Garbe-Schönberg, D. & Müller, S. Nano-particulate pressed powder tablets for LA-ICP-MS. J. Anal. At. Spectrom. 29, 990–1000 (2014).
Google Scholar
Jochum, K. P. et al. Nano-powdered calcium carbonate reference materials: significant progress for microanalysis? Geostand. Geoanal. Res. 43, 595–609 (2019).
Google Scholar
Cleveland, W. S., Grosse, E. & Shyu, W. M. in Statistical Models in S (eds Chambers, J. M. & Hastie, T.) 309–376 (Chapman and Hall/CRC, 1992).
Guatelli-Steinberg, D., Floyd, B. A., Dean, M. C. & Reid, D. J. Enamel extension rate patterns in modern human teeth: two approaches designed to establish an integrated comparative context for fossil primates. J. Hum. Evol. 63, 475–486 (2012).
Google Scholar
Birch, W. & Dean, M. C. A method of calculating human deciduous crown formation times and of estimating the chronological ages of stressful events occurring during deciduous enamel formation. J. Forensic Leg. Med. 22, 127–144 (2014).
Google Scholar
Koch, P. L., Tuross, N. & Fogel, M. L. The effects of sample treatment and diagenesis on the isotopic integrity of carbonate in biogenic hydroxylapatite. J. Archaeol. Sci. 24, 417–429 (1997).
Google Scholar
Spötl, C. & Vennemann, T. W. Continuous‐flow isotope ratio mass spectrometric analysis of carbonate minerals. Rapid Commun. Mass Spectrom. 17, 1004–1006 (2003).
Google Scholar
watch avatar the way of water full movie
watch avatar the way of water full movie
watch avatar the way of water full movie