Dietary strategies of Pleistocene Pongo sp. and Homo erectus on Java (Indonesia)

Written by on January 17, 2023

  • von Koenigswald, G. H. R. Fossil hominids from the Lower Pleistocene of Java. In Report of the Eighteenth Session of the International Geological Congress (ed. Butler, A. J.) 59–61 (International Geological Congress, 1948).

  • Grine, F. E. & Franzen, J. L. Fossil hominid teeth from the Sangiran Dome (Java, Indonesia). Cour. Forsch. Inst. Senckenberg 171, 75–103 (1994).

    Google Scholar 

  • Bettis, E. A. et al. Way out of Africa: Early Pleistocene paleoenvironments inhabited by Homo erectus in Sangiran, Java. J. Hum. Evol. 56, 11–24 (2009).

    Article 

    Google Scholar 

  • Matsu’ura, S. et al. Age control of the first appearance datum for Javanese Homo erectus in the Sangiran area. Science 367, 210–214 (2020).

    Article 

    Google Scholar 

  • Weidenreich, F. Giant early man from Java and South China. Anthropol. Pap. Am. Mus. Nat. Hist. 40, 1–134 (1945).

    Google Scholar 

  • von Koenigswald, G. H. R. Pithecanthropus, Meganthropus and the Australopithecinae. Nature 173, 795–797 (1954).

    Article 

    Google Scholar 

  • Franzen, J. L. in Ancestors: The Hard Evidence (ed. Delson, E.) 221–226 (Alan R. Liss, 1985).

  • Tyler, D. E. Sangiran 5, (‘Pithecanthropus dubius’), Homo erectus, ‘Meganthropus,’ or Pongo? Hum. Evol. 18, 229–241 (2003).

    Article 

    Google Scholar 

  • Tyler, D. E. An examination of the taxonomic status of the fragmentary mandible Sangiran 5, (Pithecanthropus dubius), Homo erectus, ‘Meganthropus’, or Pongo? Quat. Int. 117, 125–130 (2004).

    Article 

    Google Scholar 

  • Zanolli, C. et al. Evidence for increased hominid diversity in the Early to Middle Pleistocene of Indonesia. Nat. Ecol. Evol. 3, 755–764 (2019).

    Article 

    Google Scholar 

  • Balter, V., Braga, J., Télouk, P. & Thackeray, J. F. Evidence for dietary change but not landscape use in South African early hominins. Nature 489, 558–560 (2012).

    Article 
    CAS 

    Google Scholar 

  • Joannes-Boyau, R. et al. Elemental signatures of Australopithecus africanus teeth reveal seasonal dietary stress. Nature 572, 112–115 (2019).

    Article 
    CAS 

    Google Scholar 

  • Cerling, T. E. et al. Stable isotope-based diet reconstructions of Turkana Basin hominins. Proc. Natl Acad. Sci. USA 110, 10501–10506 (2013).

    Article 
    CAS 

    Google Scholar 

  • Lüdecke, T. et al. Dietary versatility of Early Pleistocene hominins. Proc. Natl Acad. Sci. USA 115, 13330–13335 (2018).

    Article 

    Google Scholar 

  • Wynn, J. G. et al. Isotopic evidence for the timing of the dietary shift toward C4 foods in eastern African Paranthropus. Proc. Natl Acad. Sci. USA 117, 21978–21984 (2020).

    Article 
    CAS 

    Google Scholar 

  • Smith, T. M. et al. Wintertime stress, nursing, and lead exposure in Neanderthal children. Sci. Adv. 4, 9483–9514 (2018).

    Article 

    Google Scholar 

  • Nava, A. et al. Early life of Neanderthals. Proc. Natl Acad. Sci. USA 117, 28719–28726 (2020).

    Article 
    CAS 

    Google Scholar 

  • Hoppe, K. A., Koch, P. L. & Furutani, T. T. Assessing the preservation of biogenic strontium in fossil bones and tooth enamel. Int. J. Osteoarchaeol. 13, 20–28 (2003).

    Article 

    Google Scholar 

  • Hinz, E. A. & Kohn, M. J. The effect of tissue structure and soil chemistry on trace element uptake in fossils. Geochim. Cosmochim. Acta 74, 3213–3231 (2010).

    Article 
    CAS 

    Google Scholar 

  • Bromage, T. G., Hogg, R. T., Lacruz, R. S. & Hou, C. Primate enamel evinces long period biological timing and regulation of life history. J. Theor. Biol. 305, 131–144 (2012).

    Article 

    Google Scholar 

  • Lacruz, R. S., Dean, M. C., Ramirez-Rozzi, F. & Bromage, T. G. Megadontia, striae periodicity and patterns of enamel secretion in Plio-Pleistocene fossil hominins. J. Anat. 213, 148–158 (2008).

    Article 

    Google Scholar 

  • Lacruz, R. S., Habelitz, S., Wright, J. T. & Paine, M. L. Dental enamel formation and implications for oral health and disease. Physiol. Rev. 97, 939–993 (2017).

    Article 

    Google Scholar 

  • Dean, M. C. Tooth microstructure tracks the pace of human life-history evolution. Proc. R. Soc. B 273, 2799–2808 (2006).

    Article 

    Google Scholar 

  • Smith, T. M. et al. Disentangling isolated dental remains of Asian Pleistocene hominins and pongines. PLoS ONE 13, e0204737 (2018).

    Article 

    Google Scholar 

  • Müller, W. & Anczkiewicz, R. Accuracy of laser-ablation (LA)-MC-ICPMS Sr isotope analysis of (bio)apatite—a problem reassessed. J. Anal. Spectrom. 31, 259–269 (2016).

    Article 

    Google Scholar 

  • Müller, W. et al. Enamel mineralization and compositional time-resolution in human teeth evaluated via histologically-defined LA-ICPMS profiles. Geochim. Cosmochim. Acta 255, 105–126 (2019).

    Article 

    Google Scholar 

  • Li, Q. et al. Spatially-resolved Ca isotopic and trace element variations in human deciduous teeth record diet and physiological change. Environ. Archaeol. 27, 474–483 (2022). https://doi.org/10.1080/14614103.2020.1758988

  • Elias, R. W., Hirao, Y. & Patterson, C. C. The circumvention of the natural biopurification of calcium along nutrient pathways by atmospheric inputs of industrial lead. Geochim. Cosmochim. Acta 46, 2561–2580 (1982).

    Article 
    CAS 

    Google Scholar 

  • Burton, J. H., Price, T. D. & Middleton, W. D. Correlation of bone Ba/Ca and Sr/Ca due to biological purification of calcium. J. Archaeol. Sci. 26, 609–616 (1999).

    Article 

    Google Scholar 

  • Balter, V. et al. Ecological and physiological variability of Sr/Ca and Ba/Ca in mammals of West European mid-Würmian food webs. Palaeogeogr. Palaeoclimatol. Palaeoecol. 186, 127–143 (2002).

    Article 

    Google Scholar 

  • Pate, F. D. Bone chemistry and paleodiet. J. Archaeol. Method Theory 1, 161–209 (1994).

    Article 

    Google Scholar 

  • Kohn, M. J., Morris, J. & Olin, P. Trace element concentrations in teeth—a modern Idaho baseline with implications for archeometry, forensics, and palaeontology. J. Archaeol. Sci. 40, 1689–1699 (2013).

    Article 
    CAS 

    Google Scholar 

  • de Vos, J. in Ancestors: The Hard Evidence (ed. Delson, E.) 215–220 (Alan R. Liss, 1985).

  • de Vos, J. et al. The Homo bearing deposits of Java and its ecological context. Cour. Forsch. Inst. Senckenberg 171, 129–140 (1994).

    Google Scholar 

  • Leinders, J. J. M. et al. The age of the hominid-bearing deposits of Java: state of the art. Geol. Mijnb. 64, 167–173 (1985).

    Google Scholar 

  • Sondaar, P. Faunal evolution and the mammalian biostratigraphy of Java. Cour. Forsch. Inst. Senckenberg 69, 219–235 (1984).

  • Peek, S. & Clementz, M. T. Sr/Ca and Ba/Ca variations in environmental and biological sources: a survey of marine and terrestrial systems. Geochim. Cosmochim. Acta 95, 36–52 (2012).

    Article 
    CAS 

    Google Scholar 

  • Reynard, B. & Balter, V. Trace elements and their isotopes in bones and teeth: diet, environments, diagenesis, and dating of archeological and paleontological samples. Palaeogeogr. Palaeoclimatol. Palaeoecol. 416, 4–16 (2014).

    Article 

    Google Scholar 

  • Jacques, L. et al. Implications of diagenesis for the isotopic analysis of Upper Miocene large mammalian herbivore tooth enamel from Chad. Palaeogeogr. Palaeoclimatol. Palaeoecol. 266, 200–210 (2008).

    Article 

    Google Scholar 

  • Brumfitt, I. M., Chinsamy, A. & Compton, J. S. Depositional environment and bone diagenesis of the Mio/Pliocene Langebaanweg bonebed, South Africa. S. Afr. J. Geol. 116, 241–258 (2013).

    Article 
    CAS 

    Google Scholar 

  • Decrée, S. et al. The post-mortem history of a bone revealed by its trace element signature: the case of a fossil whale rostrum. Chem. Geol. 477, 137–150 (2018).

    Article 

    Google Scholar 

  • Janssen, R. et al. Tooth enamel stable isotopes of Holocene and Pleistocene fossil fauna reveal glacial and interglacial paleoenvironments of hominins in Indonesia. Quat. Sci. Rev. 144, 145–154 (2016).

    Article 

    Google Scholar 

  • Blumenthal, S. A. et al. Stable isotope time-series in mammalian teeth: in situ δ18O from the innermost enamel layer. Geochim. Cosmochim. Acta 124, 223–236 (2014).

    Article 
    CAS 

    Google Scholar 

  • Zazzo, A., Balasse, M. & Patterson, W. P. High-resolution δ13C intratooth profiles in bovine enamel: implications for mineralization pattern and isotopic attenuation. Geochim. Cosmochim. Acta 69, 3631–3642 (2005).

    Article 
    CAS 

    Google Scholar 

  • Deutsch, D. & Pe’er, E. Development of enamel in human fetal teeth. J. Dent. Res. 61, 1543–1551 (1982).

    CAS 

    Google Scholar 

  • Dean, C. et al. Growth processes in teeth distinguish modern humans from Homo erectus and earlier hominins. Nature 414, 628–631 (2001).

    Article 
    CAS 

    Google Scholar 

  • Guatelli-Steinberg, D., Ferrell, R. J. & Spence, J. Linear enamel hypoplasia as an indicator of physiological stress in great apes: reviewing the evidence in light of enamel growth variation. Am. J. Phys. Anthropol. 148, 191–204 (2012).

    Article 

    Google Scholar 

  • Cerling, T. E. et al. Woody cover and hominin environments in the past 6 million years. Nature 476, 51–56 (2011).

    Article 
    CAS 

    Google Scholar 

  • Reid, D. J. & Dean, M. C. Variation in modern human enamel formation times. J. Hum. Evol. 50, 329–346 (2006).

    Article 
    CAS 

    Google Scholar 

  • Smith, T. M. Dental development in living and fossil orangutans. J. Hum. Evol. 94, 92–105 (2016).

    Article 

    Google Scholar 

  • Schwartz, G. T., Reid, D. J. & Dean, C. Developmental aspects of sexual dimorphism in hominoid canines. Int. J. Primatol. 22, 837–860 (2001).

    Article 

    Google Scholar 

  • Bonhommeau, S. et al. Eating up the world’s food web and the human trophic level. Proc. Natl Acad. Sci. USA 110, 20617–20620 (2013).

    Article 
    CAS 

    Google Scholar 

  • Sponheimer, M. & Lee-Thorp, J. A. Enamel diagenesis at South African Australopith sites: implications for paleoecological reconstruction with trace elements. Geochim. Cosmochim. Acta 70, 1644–1654 (2006).

    Article 
    CAS 

    Google Scholar 

  • Eltringham, S. K. in Pigs, Peccaries and Hippos (ed. Oliver, W.) 55–60 (International Union for the Conservation of Nature and Natural Resources, 1993).

  • Jablonski, N. G. The hippo’s tale: how the anatomy and physiology of Late Neogene Hexaprotodon shed light on Late Neogene environmental change. Quat. Int. 117, 119–123 (2004).

    Article 

    Google Scholar 

  • Hendier, A. Diet Determination of Wild Pygmy Hippopotamus (Choeropsis liberiensis). MSc thesis, Univ. Neuchâtel (2019).

  • Klein, I. Ernährung und ökologisches Profil von Axis lydekkeri. MSc thesis, Goethe Univ. (2020).

  • Russon, A. E. et al. in Orangutans: Geographic Variation in Behavioral Ecology and Conservation (eds Wich, S. A. et al.) 135–156 (Oxford Univ. Press, 2009).

  • Kanamori, T. et al. Feeding ecology of Bornean orangutans (Pongo pygmaeus morio) in Danum Valley, Sabah, Malaysia: a 3‐year record including two mast fruitings. Am. J. Primatol. 72, 820–840 (2010).

    Article 

    Google Scholar 

  • Kanamori, T., Kuze, N., Bernard, H., Malim, T. P. & Kohshima, S. Fluctuations of population density in Bornean orangutans (Pongo pygmaeus morio) related to fruit availability in the Danum Valley, Sabah, Malaysia: a 10-year record including two mast fruitings and three other peak fruitings. Primates 58, 225–235 (2017).

    Article 

    Google Scholar 

  • Sémah, A.-M., Sémah B, F., Djubiantono, T. & Brasseur, B. Landscapes and hominids’ environments: changes between the Lower and the early Middle Pleistocene in Java (Indonesia). Quat. Int. 4, 451 (2009).

    Google Scholar 

  • Sémah, A. M. & Sémah, F. The rain forest in Java through the Quaternary and its relationships with humans (adaptation, exploitation and impact on the forest). Quat. Int. 249, 120–128 (2012).

    Article 

    Google Scholar 

  • Brasseur, B., Sémah, F., Sémah, A.-M. & Djubiantono, T. Approche paléopédologique de l’environnement des hominidés fossiles du dôme de Sangiran (Java central, Indonésie). Quaternaire 22, 13–34 (2011).

    Google Scholar 

  • Smith, T. M., Austin, C., Hinde, K., Vogel, E. R. & Arora, M. Cyclical nursing patterns in wild orangutans. Sci. Adv. 3, e1601517 (2017).

    Article 

    Google Scholar 

  • Humphrey, L. T. Isotopic and trace element evidence of dietary transitions in early life. Ann. Hum. Biol. 41, 348–357 (2014).

    Article 

    Google Scholar 

  • Widdowson, E. M. Absorption, excretion and storage of trace elements: studies over 50 years. Food Chem. 43, 203–207 (1992).

    Article 
    CAS 

    Google Scholar 

  • Dean, C., Le Cabec, A., Spiers, K., Zhang, Y. & Garrevoet, J. Incremental distribution of strontium and zinc in great ape and fossil hominin cementum using synchrotron X-ray fluorescence mapping. J. R. Soc. Interface 15, 20170626 (2018).

  • Dean, M. C., Le Cabec, A., Van Malderen, S. J. M. & Garrevoet, J. Synchrotron X-ray fluorescence imaging of strontium incorporated into the enamel and dentine of wild-shot orangutan canine teeth. Arch. Oral. Biol. 119, 104879 (2020).

    Article 
    CAS 

    Google Scholar 

  • Pontzer, H., Raichlen, D. A., Shumaker, R. W., Ocobock, C. & Wich, S. A. Metabolic adaptation for low energy throughput in orangutans. Proc. Natl Acad. Sci. USA 107, 14048–14052 (2010).

    Article 
    CAS 

    Google Scholar 

  • Mahaney, W. C., Hancock, R. G. V., Aufreiter, S., Milner, M. W. & Voros, J. Bornean orangutan geophagy: analysis of ingested and control soils. Environ. Geochem. Health 38, 51–64 (2016).

    Article 
    CAS 

    Google Scholar 

  • Austin, C. et al. Uncovering system-specific stress signatures in primate teeth with multimodal imaging. Sci. Rep. 6, 18802 (2016).

  • Humphrey, L. T. Weaning behaviour in human evolution. Semin. Cell Dev. Biol. 21, 453–461 (2010).

    Article 

    Google Scholar 

  • van Noordwijk, M. A., Willems, E. P., Utami Atmoko, S. S., Kuzawa, C. W. & van Schaik, C. P. Multi-year lactation and its consequences in Bornean orangutans (Pongo pygmaeus wurmbii). Behav. Ecol. Sociobiol. 67, 805–814 (2013).

    Article 

    Google Scholar 

  • Galdikas, B. M. F. & Wood, J. W. Birth spacing patterns in humans and apes. Am. J. Phys. Anthropol. 83, 185–191 (1990).

    Article 
    CAS 

    Google Scholar 

  • van Noordwijk, M. A. & van Schaik, C. P. Development of ecological competence in Sumatran orangutans. Am. J. Phys. Anthropol. 127, 79–94 (2005).

    Article 

    Google Scholar 

  • Sugardjito, J., te Boekhorst, J. A. & van Hooff, J. A. R. A. M. Ecological constraints on the grouping of wild orangutans (Pongo pygmaeus) in the Gunung Leuser National Park, Sumatra, Indonesia. Int. J. Primatol. 8, 17–41 (1987).

    Article 

    Google Scholar 

  • Wich, S. A. et al. Life history of wild Sumatran orangutans (Pongo abelii). J. Hum. Evol. 47, 385–398 (2004).

    Article 
    CAS 

    Google Scholar 

  • Dubois, E. Palaeontologische Onderzoekingen op Java (Verslag van het Mijnwezen, 1891).

  • Dubois, E. Pithecanthropus erectus, Einen Menschenaehnliche Uebergangsform aus Java (G.E. Stechert (Alfred Hafner),1894).

  • Joordens, J. C. A. et al. Homo erectus at Trinil on Java used shells for tool production and engraving. Nature 518, 228–231 (2015).

    Article 
    CAS 

    Google Scholar 

  • Ungar, P. S., Grine, F. E. & Teaford, M. F. Diet in early Homo: a review of the evidence and a new model of adaptive versatility. Annu. Rev. Anthropol. 35, 209–228 (2006).

    Article 

    Google Scholar 

  • Tausch, J. A New Method for Examining Hominin Dietary Strategy: Occlusal Microwear Vector Analysis of the Sangiran 7 Homo erectus Molars (Goethe Univ., 2011).

  • Tausch, J., Kullmer, O. & Bromage, T. G. A new method for determining the 3D spatial orientation of molar microwear. Scanning 37, 446–457 (2015).

    Article 

    Google Scholar 

  • Caropreso, S. et al. Thin sections for hard tissue histology: a new procedure. J. Microsc. 199, 244–247 (2000).

    Article 
    CAS 

    Google Scholar 

  • Bondioli, L., Nava, A., Rossi, P. F. & Sperduti, A. Diet and health in central-southern Italy during the Roman Imperial time. Acta IMEKO 5, 19–25 (2016).

    Article 

    Google Scholar 

  • Müller, W., Shelley, M., Miller, P. & Broude, S. Initial performance metrics of a new custom-designed ArF excimer LA-ICPMS system coupled to a two-volume laser-ablation cell. J. Anal. At. Spectrom. 24, 209–214 (2009).

    Article 

    Google Scholar 

  • Evans, D. & Müller, W. LA-ICPMS elemental imaging of complex discontinuous carbonates: an example using large benthic foraminifera. J. Anal. At. Spectrom. 28, 1039–1044 (2013).

    Article 
    CAS 

    Google Scholar 

  • Longerich, H. P., Jackson, S. E. & Günther, D. Laser ablation inductively coupled plasma mass spectrometric transient signal data acquisition and analyte concentration calculation. J. Anal. At. Spectrom. 11, 899–904 (1996).

    Article 
    CAS 

    Google Scholar 

  • Retief, D. H., Cleaton-Jones, P. E., Turkstra, J. & De Wet, W. J. The quantitative analysis of sixteen elements in normal human enamel and dentine by neutron activation analysis and high-resolution gamma-spectrometry. Arch. Oral. Biol. 16, 1257–1267 (1971).

    Article 
    CAS 

    Google Scholar 

  • Lacruz, R. S. Enamel: molecular identity of its transepithelial ion transport system. Cell Calcium 65, 1–7 (2017).

    Article 
    CAS 

    Google Scholar 

  • Klemme, S. et al. Synthesis and preliminary characterisation of new silicate, phosphate and titanite reference glasses. Geostand. Geoanal. Res. 32, 39–54 (2008).

    Article 
    CAS 

    Google Scholar 

  • Jochum, K. P. et al. Accurate trace element analysis of speleothems and biogenic calcium carbonates by LA-ICP-MS. Chem. Geol. 318–319, 31–44 (2012).

    Article 

    Google Scholar 

  • Garbe-Schönberg, D. & Müller, S. Nano-particulate pressed powder tablets for LA-ICP-MS. J. Anal. At. Spectrom. 29, 990–1000 (2014).

    Article 

    Google Scholar 

  • Jochum, K. P. et al. Nano-powdered calcium carbonate reference materials: significant progress for microanalysis? Geostand. Geoanal. Res. 43, 595–609 (2019).

    Article 

    Google Scholar 

  • Cleveland, W. S., Grosse, E. & Shyu, W. M. in Statistical Models in S (eds Chambers, J. M. & Hastie, T.) 309–376 (Chapman and Hall/CRC, 1992).

  • Guatelli-Steinberg, D., Floyd, B. A., Dean, M. C. & Reid, D. J. Enamel extension rate patterns in modern human teeth: two approaches designed to establish an integrated comparative context for fossil primates. J. Hum. Evol. 63, 475–486 (2012).

    Article 

    Google Scholar 

  • Birch, W. & Dean, M. C. A method of calculating human deciduous crown formation times and of estimating the chronological ages of stressful events occurring during deciduous enamel formation. J. Forensic Leg. Med. 22, 127–144 (2014).

    Article 
    CAS 

    Google Scholar 

  • Koch, P. L., Tuross, N. & Fogel, M. L. The effects of sample treatment and diagenesis on the isotopic integrity of carbonate in biogenic hydroxylapatite. J. Archaeol. Sci. 24, 417–429 (1997).

    Article 

    Google Scholar 

  • Spötl, C. & Vennemann, T. W. Continuous‐flow isotope ratio mass spectrometric analysis of carbonate minerals. Rapid Commun. Mass Spectrom. 17, 1004–1006 (2003).

    Article 

    Google Scholar 

  • watch avatar the way of water full movie
    watch avatar the way of water full movie
    watch avatar the way of water full movie

    Source link


    Current track

    Title

    Artist