Global water resources and the role of groundwater in a resilient water future
Written by on February 1, 2023
Vorosmarty, C. J. et al. Global threats to human water security and river biodiversity. Nature 467, 555–561 (2010).
Google Scholar
Doell, P., Mueller Schmied, H., Schuh, C., Portmann, F. T. & Eicker, A. Global-scale assessment of groundwater depletion and related groundwater abstractions: combining hydrological modeling with information from well observations and GRACE satellites. Water Resour. Res. 50, 5698–5720 (2014).
Google Scholar
Wada, Y. et al. Global depletion of groundwater resources. Geophys. Res. Lett. 37, L20402 (2010).
Google Scholar
Douville, H. et al. in Climate Change 2021: The Physical Science Basis (eds Masson-Delmotte, V. et al.) 1055–1210 (IPCC, Cambridge Univ. Press, 2021).
Olivier, D. W. & Xu, Y. X. Making effective use of groundwater to avoid another water supply crisis in Cape Town, South Africa. Hydrogeol. J. 27, 823–826 (2019).
Google Scholar
Ozment, S. et al. Natural infrastructure in Sao Paulo’s water system. World Resources Institute Report 2013–2014: Interim Findings (2018).
Pascale, S., Kapnick, S. B., Delworth, T. L. & Cooke, W. F. Increasing risk of another Cape Town ‘Day Zero’ drought in the 21st century. Proc. Natl Acad. Sci. USA 117, 29495 (2020).
Google Scholar
Alley, W. M., Reilly, T. E. & Franke, O. L. Sustainability of ground-water resources. US Geological Survey Circular 1186 (1999).
Wada, Y. & Bierkens, M. F. P. Sustainability of global water use: past reconstruction and future projections. Environ. Res. Lett. https://doi.org/10.1088/1748-9326/9/10/104003 (2014).
Google Scholar
Breslin, S. COP26 has 4 goals. Water is central to all of them. SIWI News https://siwi.org/latest/cop26-has-4-goals-water-is-central-to-all-of-them/ (2021).
Global Risks 2021 16th edition (World Economic Forum, 2021); https://www.weforum.org/reports/the-global-risks-report-2021/
The Water Challenge: The Roundtable on Water Financing (OECD, 2022); https://www.oecd.org/water/roundtable-on-financing-water.htm
The United Nations World Water Development Report 2018: Nature-Based Solutions for Water (United Nations World Water Assessment Program/UNESCO, 2018).
Browder, G., Ozment, S., Rehberger-Bescos, I., Gartner, T. & Lange, G. M. Integrating Green and Gray: Creating Next Generation Infrastructure (World Bank and World Resources Institute, 2019); https://openknowledge.worldbank.org/handle/10986/31430
Making Every Drop Count: Agenda for Water Action (High Level Panel on Water, United Nations and World Bank, 2018).
Lederer, E. M. Next UN assembly president warns world in dangerous crisis. Washington Post https://www.washingtonpost.com/world/next-un-assembly-president-warns-world-in-dangerous-crisis/2022/06/07/55075dce-e6b6-11ec-a422-11bbb91db30b_story.html (7 June 2022).
Tapley, B. D. et al. Contributions of GRACE to understanding climate change. Nat. Clim. Change 9, 358–369 (2019).
Google Scholar
Mekonnen, M. M. & Hoekstra, A. Y. Blue water footprint linked to national consumption and international trade is unsustainable. Nat. Food 1, 792–800 (2020).
Google Scholar
Rodell, M. et al. Emerging trends in global freshwater availability. Nature 557, 651–659 (2018).
Google Scholar
Save, H., Bettadpur, S. & Tapley, B. D. High-resolution CSR GRACE RL05 mascons. J. Geophys. Res. Solid Earth 121, 7547–7569 (2016).
Google Scholar
Tapley, B. D., Bettadpur, S., Watkins, M. & Reigber, C. The Gravity Recovery And Climate Experiment: mission overview and early results. Geophys. Res. Lett. https://doi.org/10.1029/2004gl019920 (2004).
Google Scholar
Richey, A. S. et al. Quantifying renewable groundwater stress with GRACE. Water Resour. Res. 51, 5217–5238 (2015).
Google Scholar
Shamsudduha, M. & Taylor, R. G. Groundwater storage dynamics in the world’s large aquifer systems from GRACE: uncertainty and role of extreme precipitation. Earth Syst. Dyn. 11, 755–774 (2020).
Google Scholar
Vishwakarma, B. D., Bates, P., Sneeuw, N., Westaway, R. M. & Bamber, J. L. Re-assessing global water storage trends from GRACE time series. Environ. Res. Lett. 16, 034005 (2021).
Google Scholar
Pekel, J. F., Cottam, A., Gorelick, N. & Belward, A. S. High-resolution mapping of global surface water and its long-term changes. Nature 540, 418–436 (2016).
Google Scholar
Lehner, B. et al. High-resolution mapping of the world’s reservoirs and dams for sustainable river-flow management. Front. Ecol. Environ. 9, 494–502 (2011).
Google Scholar
Scanlon, B. R. et al. Global models underestimate large decadal declining and rising water storage trends relative to GRACE satellite data. Proc. Natl Acad. Sci. USA 115, E1080–E1089 (2018).
Google Scholar
MacDonald, A. M. et al. Mapping groundwater recharge in Africa from ground observations and implications for water security. Environ. Res. Lett. https://doi.org/10.1088/1748-9326/abd661 (2021).
Google Scholar
Konikow, L. F. Overestimated water storage. Nat. Geosci. 6, 3 (2013).
Google Scholar
Konikow, L. F. Contribution of global groundwater depletion since 1900 to sea-level rise. Geophys. Res. Lett. https://doi.org/10.1029/2011gl048604 (2011).
Google Scholar
Pokhrel, Y. N. et al. Model estimates of sea-level change due to anthropogenic impacts on terrestrial water storage. Nat. Geosci. 5, 389–392 (2012).
Google Scholar
de Graaf, I. E. M. et al. A global-scale two-layer transient groundwater model: development and application to groundwater depletion. Adv. Water Resour. 102, 53–67 (2017).
Google Scholar
Rateb, A. et al. Comparison of groundwater storage changes from GRACE satellites with monitoring and modeling of major U.S. aquifers. Water Resour. Res. https://doi.org/10.1029/2020WR027556 (2020).
Google Scholar
de Graaf, I. E. M., Gleeson, T., van Beek, L. P. H., Sutanudjaja, E. H. & Bierkens, M. F. P. Environmental flow limits to global groundwater pumping. Nature 574, 90–94 (2019).
Google Scholar
Sophocleous, M. From safe yield to sustainable development of water resources — the Kansas experience. J. Hydrol. 235, 27–43 (2000).
Google Scholar
Konikow, L. F. & Bredehoeft, J. D. Groundwater Resource Development: Effects and Sustainability (USGS Groundwater Project, 2020).
MacAllister, D. J., Krishan, G., Basharat, M., Cuba, D. & MacDonald, A. M. A century of groundwater accumulation in Pakistan and northwest India. Nat. Geosci. https://doi.org/10.1038/s41561-022-00926-1 (2022).
Google Scholar
Scanlon, B. R. et al. Effects of climate and irrigation on GRACE-based estimates of water storage changes in major US aquifers. Environ. Res. Lett. https://doi.org/10.1088/1748-9326/ac16ff (2021).
Google Scholar
McGuire, V. L. Water-Level and Recoverable Water In Storage Changes, High Plains Aquifer, Predevelopment to 2015 and 2013–15. US Geological Survey Scientific Investigations Report 2017–5040 (2017); https://doi.org/10.3133/sir20175040
Faunt, C. C. Groundwater availability of the Central Valley Aquifer, California. US Geol. Surv. Prof. Pap. 1766 (2009).
Vorosmarty, C. J., Green, P., Salisbury, J. & Lammers, R. B. Global water resources: vulnerability from climate change and population growth. Science 289, 284–288 (2000).
Google Scholar
Mekonnen, M. M. & Hoekstra, A. Y. Four billion people facing severe water scarcity. Sci. Adv. https://doi.org/10.1126/sciadv.1500323 (2016).
Google Scholar
Vorosmarty, C. J. & Sahagian, D. Anthropogenic disturbance of the terrestrial water cycle. Bioscience 50, 753–765 (2000).
Google Scholar
Gronwall, J. & Danert, K. Regarding groundwater and drinking water access through a human rights lens: self-supply as a norm. Water https://doi.org/10.3390/w12020419 (2020).
Google Scholar
van Vliet, M. T. H. et al. Global water scarcity including surface water quality and expansions of clean water technologies. Environ. Res. Lett. https://doi.org/10.1088/1748-9326/abbfc3 (2021).
Google Scholar
Podgorski, J. & Berg, M. Global threat of arsenic in groundwater. Science 368, 845–850 (2020).
Google Scholar
Yapiyev, V., Sagintayev, Z., Inglezakis, V. J., Samarkhanov, K. & Verhoef, A. Essentials of endorheic basins and lakes: a review in the context of current and future water resource management and mitigation activities in Central Asia. Water https://doi.org/10.3390/w9100798 (2017).
Google Scholar
Pauloo, R. A., Fogg, G. E., Guo, Z. L. & Harter, T. Anthropogenic basin closure and groundwater salinization (ABCSAL). J. Hydrol. https://doi.org/10.1016/j.jhydrol.2020.125787 (2021).
Google Scholar
Cao, T. Z., Han, D. M. & Song, X. F. Past, present, and future of global seawater intrusion research: a bibliometric analysis. J. Hydrol. https://doi.org/10.1016/j.jhydrol.2021.126844 (2021).
Google Scholar
Werner, A. D. et al. Seawater intrusion processes, investigation and management: recent advances and future challenges. Adv. Water Resour. 51, 3–26 (2013).
Google Scholar
Scanlon, B. R. et al. Linkages between GRACE water storage, hydrologic extremes, and climate teleconnections in major African aquifers. Environ. Res. Lett. https://doi.org/10.1088/1748-9326/ac3bfc (2022).
Google Scholar
Held, I. M. & Soden, B. J. Robust responses of the hydrological cycle to global warming. J. Clim. 19, 5686–5699 (2006).
Google Scholar
Fan, X., Duan, Q. Y., Shen, C. P., Wu, Y. & Xing, C. Global surface air temperatures in CMIP6: historical performance and future changes. Environ. Res. Lett. 15, 104056 (2020).
Google Scholar
Tabari, H. Climate change impact on flood and extreme precipitation increases with water availability. Sci. Rep. https://doi.org/10.1038/s41598-020-70816-2 (2020).
Google Scholar
Williams, A. P. et al. Large contribution from anthropogenic warming to an emerging North American megadrought. Science 368, 314 (2020).
Google Scholar
Arias, P. A. et al. in Climate Change 2021: The Physical Science Basis (eds Masson-Delmotte, V. et al.) 33−144 (IPCC, Cambridge Univ. Press, 2021).
van Dijk, A. et al. The Millennium Drought in southeast Australia (2001–2009): natural and human causes and implications for water resources, ecosystems, economy, and society. Water Resour. Res. 49, 1040–1057 (2013).
Google Scholar
Scanlon, B. R. et al. Hydrologic implications of GRACE satellite data in the Colorado River Basin. Water Resour. Res. 51, 9891–9903 (2015).
Google Scholar
Rateb, A., Scanlon, B. R. & Kuo, C. Y. Multi-decadal assessment of water budget and hydrological extremes in the Tigris-Euphrates Basin using satellites, modeling, and in-situ data. Sci. Total Environ. https://doi.org/10.1016/j.scitotenv.2020.144337 (2021).
Google Scholar
Anyamba, A., Glennie, E. & Small, J. Teleconnections and interannual transitions as observed in African vegetation: 2015–2017. Remote Sens. https://doi.org/10.3390/rs10071038 (2018).
Google Scholar
Ul Hassan, W. & Nayak, M. A. Global teleconnections in droughts caused by oceanic and atmospheric circulation patterns. Environ. Res. Lett. https://doi.org/10.1088/1748-9326/abc9e2 (2021).
Google Scholar
Shen, Z. X. et al. Drying in the low-latitude Atlantic Ocean contributed to terrestrial water storage depletion across Eurasia. Nat. Commun. 13, 1849 (2022).
Google Scholar
Dettinger, M. D. Atmospheric rivers as drought busters on the US West Coast. J. Hydrometeorol. 14, 1721–1732 (2013).
Google Scholar
Taylor, R. G. et al. Ground water and climate change. Nat. Clim. Change 3, 322–329 (2013).
Google Scholar
Cuthbert, M. O. et al. Observed controls on resilience of groundwater to climate variability in sub-Saharan Africa. Nature 572, 230 (2019).
Google Scholar
Hugonnet, R. et al. Accelerated global glacier mass loss in the early twenty-first century. Nature 592, 726 (2021).
Google Scholar
Zhao, F., Long, D., Li, X., Huang, Q. & Han, P. Rapid glacier mass loss in the Southeastern Tibetan Plateau since the year 2000 from satellite observations. Remote. Sens. Environ. 270, 112853 (2022).
Google Scholar
Li, X. Y. et al. Climate change threatens terrestrial water storage over the Tibetan Plateau. Nat. Clim. Change https://doi.org/10.1038/s41558-022-01443-0 (2022).
Google Scholar
Yao, T. D. et al. The imbalance of the Asian water tower. Nat. Rev. Earth Environ. https://doi.org/10.1038/s43017-022-00299-4 (2022).
Google Scholar
Immerzeel, W. W., van Beek, L. P. H. & Bierkens, M. F. P. Climate change will affect the Asian water towers. Science 328, 1382–1385 (2010).
Google Scholar
Immerzeel, W. W. et al. Importance and vulnerability of the world’s water towers. Nature 577, 364 (2020).
Google Scholar
Dery, S. J. et al. Detection of runoff timing changes in pluvial, nival, and glacial rivers of western Canada. Water Resour. Res. https://doi.org/10.1029/2008wr006975 (2009).
Google Scholar
Siebert, S. et al. Groundwater use for irrigation – a global inventory. Hydrol. Earth Syst. Sci. 7, 3977–4021 (2010).
Scanlon, B. R. et al. Groundwater depletion and sustainability of irrigation in the US High Plains and Central Valley. Proc. Natl Acad. Sci. USA 109, 9320–9325 (2012).
Google Scholar
Dahlke, H. E. et al. in Advanced Tools for Integrated Water Resources Management Vol. 3 (eds Friesen, J. & Rodriguez-Sinobas, L.) 215–275 (Elsevier, 2018).
Reddy, V. R., Pavelic, P. & Hanjra, M. A. Underground taming of floods for irrigation (UTFI) in the river basins of South Asia: institutionalising approaches and policies for sustainable water management and livelihood enhancement. Water Policy 20, 369–387 (2018).
Google Scholar
McDonald, R. I., Weber, K. F., Padowski, J., Boucher, T. & Shemie, D. Estimating watershed degradation over the last century and its impact on water-treatment costs for the world’s large cities. Proc. Natl Acad. Sci. USA 113, 9117–9122 (2016).
Google Scholar
The State of the World’s Forests 2020. Forests, Biodiversity, and People (FAO/UNEP, 2020).
Convention on Wetlands. Global Wetland Outlook: Special Edition 2021 (Secretariat of the Convention on Wetlands, 2021).
Scanlon, B. R., Jolly, I., Sophocleous, M. & Zhang, L. Global impacts of conversions from natural to agricultural ecosystems on water resources: quantity versus quality. Water Resour. Res. https://doi.org/10.1029/2006WR005486 (2007).
Google Scholar
Nosetto, M. D., Paez, R. A., Ballesteros, S. I. & Jobbagy, E. G. Higher water-table levels and flooding risk under grain vs. livestock production systems in the subhumid plains of the Pampas. Agric. Ecosyst. Environ. 206, 60–70 (2015).
Google Scholar
Favreau, G. et al. Land clearing, climate variability, and water resources increase in semiarid southwest Niger: a review. Water Resour. Res. https://doi.org/10.1029/2007wr006785 (2009).
Google Scholar
Walker, C. D., Zhang, l, Ellis, T. W., Hatton, T. J. & Petheram, C. Estimating impacts of changed land use on recharge: review of modelling and other approaches appropriate for management of dryland salinity. Hydrogeol. J. 10, 68–90 (2002).
Google Scholar
Nosetto, M. D., Jobbagy, E. G., Jackson, R. B. & Sznaider, G. A. Reciprocal influence of crops and shallow ground water in sandy landscapes of the Inland Pampas. Field Crops Res. 113, 138–148 (2009).
Google Scholar
Gimenez, R., Mercau, J., Nosetto, M., Paez, R. & Jobbagy, E. The ecohydrological imprint of deforestation in the semiarid Chaco: insights from the last forest remnants of a highly cultivated landscape. Hydrol. Process. 30, 2603–2616 (2016).
Google Scholar
Eilers, R. G., Eilers, W. D. & Fitzgerald, M. M. A salinity risk index for soils of the Canadian prairies. Hydrogeol. J. 5, 68–79 (1997).
Google Scholar
Progress on Household Drinking Water, Sanitation and Hygiene 2000–2020: Five Years into the SDGs (WHO/UNICEF, 2021).
Cobbing, J. & Hiller, B. Waking a sleeping giant: realizing the potential of groundwater in sub-Saharan Africa. World Dev. 122, 597–613 (2019).
Google Scholar
Rockström, J. & Falkenmark, M. Agriculture: increase water harvesting in Africa. Nature 519, 283–285 (2015).
Google Scholar
MacAllister, D. J., MacDonald, A. M., Kebede, S., Godfrey, S. & Calow, R. Comparative performance of rural water supplies during drought. Nat. Commun. 11, 1099 (2020).
Google Scholar
Aboah, M. & Miyittah, M. K. Estimating global water, sanitation, and hygiene levels and related risks on human health, using global indicators data from 1990 to 2020. J. Water Health 20, 1091–1101 (2022).
Google Scholar
Abell, R. et al. Beyond the Source: The Environmental, Economic and Community Benefits of Source Water Protection (The Nature Conservancy, 2017).
Herrera-Garcia, G. et al. Mapping the global threat of land subsidence. Science 371, 34–36 (2021).
Google Scholar
Scanlon, B. R., Reedy, R. C., Faunt, C. C., Pool, D. & Uhlman, K. Can we mitigate climate extremes using managed aquifer recharge: case studies California Central Valley and South-Central Arizona, USA. AGU Fall Meeting Abstract H12G-02, Invited (2015).
Qadir, M. et al. Global and regional potential of wastewater as a water, nutrient and energy source. Nat. Resour. Forum 44, 40–51 (2020).
Google Scholar
Water Reuse within a Circular Economy Context. Global Water Security Issues Series 2 (UNESCO, 2020).
Jones, E. R., van Vliet, M. T. H., Qadir, M. & Bierkens, M. F. P. Country-level and gridded estimates of wastewater production, collection, treatment and reuse. Earth Syst. Sci. Data 13, 237–254 (2021).
Google Scholar
Jeuland, M. Challenges to wastewater reuse in the Middle East and North Africa. Middle East. Dev. J. 7, 1–25 (2015).
Google Scholar
Zhang, Y. & Shen, Y. Wastewater irrigation: past, present, and future. WIREs Water 6, e1234 (2019).
Google Scholar
Fito, J. & Van Hulle, S. W. H. Wastewater reclamation and reuse potentials in agriculture: towards environmental sustainability. Environ. Dev. Sust. 23, 2949–2972 (2021).
Google Scholar
Gao, L., Yoshikawa, S., Iseri, Y., Fujimori, S. & Kanae, S. An economic assessment of the global potential for seawater desalination to 2050. Water https://doi.org/10.3390/w9100763 (2017).
Google Scholar
Ahdab, Y. D., Thiel, G. P., Bohlke, J. K., Stanton, J. & Lienhard, J. H. Minimum energy requirements for desalination of brackish groundwater in the United States with comparison to international datasets. Water Res. 141, 387–404 (2018).
Google Scholar
Jones, E., Qadir, M., van Vliet, M. T. H., Smakhtin, V. & Kang, S. M. The state of desalination and brine production: a global outlook. Sci. Total Environ. 657, 1343–1356 (2019).
Google Scholar
Lin, S. S. et al. Seawater desalination technology and engineering in China: a review. Desalination https://doi.org/10.1016/j.desal.2020.114728 (2021).
Google Scholar
Martinez-Alvarez, V., Martin-Gorriz, B. & Soto-Garcia, M. Seawater desalination for crop irrigation — a review of current experiences and revealed key issues. Desalination 381, 58–70 (2016).
Google Scholar
Smith, K., Liu, S. M., Hu, H. Y., Dong, X. & Wen, X. H. Water and energy recovery: the future of wastewater in China. Sci. Total Environ. 637, 1466–1470 (2018).
Google Scholar
Pulido-Bosch, A. et al. Impacts of agricultural irrigation on groundwater salinity. Environ/ Earth Sci. https://doi.org/10.1007/s12665-018-7386-6 (2018).
Google Scholar
Kurnik, J. The Next California: Phase 1: Investigating Potential in the Mid-Mississippi Delta River Region (The Markets Institute at WWF, 2020); https://www.worldwildlife.org/publications/the-next-california-phase-1-investigating-potential-in-the-mid-mississippi-delta-river-region
Senay, G. B., Schauer, M., Friedrichs, M., Velpuri, N. M. & Singh, R. K. Satellite-based water use dynamics using historical Landsat data (1984–2014) in the southwestern United States. Remote Sens. Environ. 202, 98–112 (2017).
Google Scholar
Gebremichael, M., Krishnamurthy, P. K., Ghebremichael, L. T. & Alam, S. What drives crop land use change during multi-year droughts in California’s Central Valley? Prices or concern for water? Remote Sens. https://doi.org/10.3390/rs13040650 (2021).
Google Scholar
Brauman, K. A., Siebert, S. & Foley, J. A. Improvements in crop water productivity increase water sustainability and food security — a global analysis. Environ. Res. Lett. 8, 024030 (2013).
Google Scholar
Mekonnen, M. M., Hoekstra, A. Y., Neale, C. M. U., Ray, C. & Yang, H. S. Water productivity benchmarks: the case of maize and soybean in Nebraska. Agric. Water Manag. https://doi.org/10.1016/j.agwat.2020.106122 (2020).
Google Scholar
Colaizzi, P. D., Gowda, P. H., Marek, T. H. & Porter, D. O. Irrigation in the Texas High Plains: a brief history and potential reductions in demand. Irrig. Drain. 58, 257–274 (2008).
Google Scholar
Scanlon, B. R., Gates, J. B., Reedy, R. C., Jackson, A. & Bordovsky, J. Effects of irrigated agroecosystems: (2). Quality of soil water and groundwater in the southern High Plains, Texas. Water Resour. Res. 46, W09538 (2010).
Ward, F. A. & Pulido-Velazquez, M. Water conservation in irrigation can increase water use. Proc. Natl Acad. Sci. USA 105, 18215–18220 (2008).
Google Scholar
Grafton, R. Q. et al. The paradox of irrigation efficiency. Science 361, 748–750 (2018).
Google Scholar
Alcott, B. in The Jevons Paradox and the Myth of Resource Efficiency Improvements (eds Polimeni, J. M., Mayumi, K., & Giampetro, M.) 7–78 (Earthscan, 2008).
MacAllister, D. J., Krishan, G., Basharat, M., Cuba, D. & MacDonald, A. M. A century of groundwater accumulation in Pakistan and northwest India. Nat. Geosci. 15, 390–396 (2022).
Google Scholar
Aarnoudse, E. & Bluemling, B. Controlling Groundwater Through Smart Card Machines: The Case of Water Quotas and Pricing Mechanisms in Gansu Province, China. Groundwater Solutions Initiative for Policy and Practice (GRIPP) Case Profile Series 02 (International Water Management Institute, 2017); https://doi.org/10.5337/2016.224
Kinzelbach, W., Wang, H., Li, Y., Wang, L. & Li, N. Groundwater Overexploitation in the North China Plain: A Path to Sustainability (Springer, 2021).
McDougall, R., Kristiansen, P. & Rader, R. Small-scale urban agriculture results in high yields but requires judicious management of inputs to achieve sustainability. Proc. Natl Acad. Sci. USA 116, 129–134 (2019).
Google Scholar
Langemeyer, J., Madrid-Lopez, C., Mendoza Beltran, A. & Villalba Mendez, G. Urban agriculture — a necessary pathway towards urban resilience and global sustainability? Landsc. Urban Plan. 210, 104055 (2021).
Google Scholar
Palmer, L. Urban agriculture growth in US cities. Nat. Sust. 1, 5–7 (2018).
Google Scholar
Grafius, D. R. et al. Estimating food production in an urban landscape. Sci. Rep. 10, 5141 (2020).
Google Scholar
The State of Food Insecurity in the World 2015 (FAO/IFAD/WFP, 2015).
Kummu, M. et al. Lost food, wasted resources: global food supply chain losses and their impacts on freshwater, cropland, and fertiliser use. Sci. Total Environ. 438, 477–489 (2012).
Google Scholar
Gleick, P. H. Global freshwater resources: soft-path solutions for the 21st century. Science 302, 1524–1528 (2003).
Google Scholar
Miralles-Wilhelm, F. Nature-Based Solutions in Agriculture — Sustainable Management and Conservation of Land, Water, and Biodiversity (FAO/The Nature Conservancy, 2021).
McDonald, R. I. & Shemie, D. Urban Water Blueprint: Mapping Conservation Solutions to the Global Water Challenge (The Nature Conservancy, 2014); http://water.nature.org/waterblueprint
Kane, M. & Erickson, J. D. Urban metabolism and payment for ecosystem services: history and policy analysis of the New York city water supply. Adv. Econ. Environ. Resour. 7, 307–328 (2007).
Google Scholar
Greater Cape Town Water Fund: Business Case: Assessing the Return on Investment for Ecological Infrastructure Restoration (The Nature Conservancy, 2019).
Hu, J., Lu, Y. H., Fu, B. J., Comber, A. J. & Harris, P. Quantifying the effect of ecological restoration on runoff and sediment yields: a meta-analysis for the Loess Plateau of China. Prog. Phys. Geogr. Earth Environ. 41, 753–774 (2017).
Google Scholar
Liu, W. W. et al. Improving wetland ecosystem health in China. Ecol. Indic. https://doi.org/10.1016/j.ecolind.2020.106184 (2020).
Google Scholar
Cities100: Chennai Is Restoring Waterbodies to Protect Against Flooding and Drought. C40 Knowledge Hub: Nordic Sustainability, South and West Asia, Chennai, Case Studies and Best Practice Examples https://www.c40knowledgehub.org/s/article/Cities100-Chennai-is-restoring-waterbodies-to-protect-against-flooding-and-drought?language=en_US (2019).
Chung, M. G., Frank, K. A., Pokhrel, Y., Dietz, T. & Liu, J. G. Natural infrastructure in sustaining global urban freshwater ecosystem services. Nat. Sust. 4, 1068 (2021).
Google Scholar
Qi, Y. F. et al. Addressing challenges of urban water management in Chinese sponge cities via nature-based solutions. Water https://doi.org/10.3390/w12102788 (2020).
Google Scholar
Acreman, M. et al. Evidence for the effectiveness of nature-based solutions to water issues in Africa. Environ. Res. Lett. https://doi.org/10.1088/1748-9326/ac0210 (2021).
Google Scholar
Livneh, B. & Badger, A. M. Drought less predictable under declining future snowpack. Nat. Clim. Change 10, 452–458 (2020).
Google Scholar
Mulligan, M., van Soesbergen, A. & Sáenz, L. GOODD, a global dataset of more than 38,000 georeferenced dams. Sci. Data 7, 31 (2020).
Google Scholar
International Commission on Large Dams https://www.icold-cigb.org/ (2022).
Yang, G., Guo, S., Liu, P. & Block, P. Integration and evaluation of forecast-informed multiobjective reservoir operations. J. Water Resour. Plan. Manag. 146, 04020038 (2020).
Google Scholar
Delaney, C. J. et al. Forecast informed reservoir operations using ensemble streamflow predictions for a multipurpose reservoir in northern California. Water Resour. Res. https://doi.org/10.1029/2019wr026604 (2020).
Amarasinghe, U. A., Muthuwatta, L., Surinaidu, L., Anand, S. & Jain, S. K. Reviving the Ganges water machine: potential. Hydrol. Earth Syst. Sci. 20, 1085–1101 (2016).
Google Scholar
Shamsudduha, M. et al. The Bengal water machine: quantified freshwater capture in Bangladesh. Science 377, 1315–1319 (2022).
Google Scholar
Chao, B. F., Wu, Y. H. & Li, Y. S. Impact of artificial reservoir water impoundment on global sea level. Science 320, 212–214 (2008).
Google Scholar
Zarfl, C., Lumsdon, A. E., Berlekamp, J., Tydecks, L. & Tockner, K. A global boom in hydropower dam construction. Aquat. Sci. 77, 161–170 (2015).
Google Scholar
Zarfl, C. et al. Future large hydropower dams impact global freshwater megafauna. Sci. Rep. https://doi.org/10.1038/s41598-019-54980-8 (2019).
Google Scholar
Wheeler, K. G., Jeuland, M., Hall, J. W., Zagona, E. & Whittington, D. Understanding and managing new risks on the Nile with the Grand Ethiopian Renaissance Dam. Nat. Commun. https://doi.org/10.1038/s41467-020-19089-x (2020).
Google Scholar
Di Baldassarre, G. et al. Water shortages worsened by reservoir effects. Nat. Sust. 1, 617–622 (2018).
Google Scholar
Dahlke, H. E., Brown, A. G., Orloff, S., Putnam, D. & O’Geen, T. Managed winter flooding of alfalfa recharges groundwater with minimal crop damage. Calif. Agric. 72, 65–75 (2018).
Google Scholar
Yang, Q. & Scanlon, B. R. How much water can be captured from flood flows to store in depleted aquifers for mitigating floods and droughts? A case study from Texas, US. Environ. Res. Lett. 14, 054011 (2019).
Google Scholar
Dillon, P. et al. Sixty years of global progress in managed aquifer recharge. Hydrogeol. J. https://doi.org/10.1007/s10040-018-1841-z. (2018).
Google Scholar
Groundwater Replenishment System Technical Brochure, https://www.ocwd.com/media/10443/gwrs-technical-brochure-2021.pdf (2021).
Konikow, L. F. Groundwater Depletion in the United States (1900–2008). US Geological Survey Scientific Investigation Report 2013–5079, http://pubs.usgs.gov/sir/2013/5079 (2013).
Hartog, N. & Stuyfzand, P. J. Water quality donsiderations on the rise as the use of managed aquifer recharge systems widens. Water 9, 808 (2017).
Google Scholar
Shumilova, O., Tockner, K., Thieme, M., Koska, A. & Zarfl, C. Global water transfer megaprojects: a potential solution for the water–food–energy nexus? Front. Environ. Sci. https://doi.org/10.3389/fenvs.2018.00150 (2018).
Google Scholar
Long, D. et al. South-to-north water diversion stabilizing Beijing’s groundwater levels. Nat. Commun. https://doi.org/10.1038/s41467-020-17428-6 (2020).
Google Scholar
Zhuang, W. Eco-environmental impact of inter-basin water transfer projects: a review. Environ. Sci. Pollut. Res. 23, 12867–12879 (2016).
Google Scholar
Hoekstra, A. Y. Virtual Water Trade: Proceedings of the International Expert Meeting on Virtual Water Trade (UNESCO-IHE, 2003).
Oki, T. & Kanae, S. Virtual water trade and world water resources. Water Sci. Technol. 49, 203–209 (2004).
Google Scholar
Dolan, F. et al. Evaluating the economic impact of water scarcity in a changing world. Nat. Commun. https://doi.org/10.1038/s41467-021-22194-0 (2021).
Google Scholar
Hoekstra, A. Y. & Mekonnen, M. M. The water footprint of humanity. Proc. Natl Acad. Sci. USA 109, 3232–3237 (2012).
Google Scholar
Dalin, C., Wada, Y., Kastner, T. & Puma, M. J. Groundwater depletion embedded in international food trade. Nature 543, 700–704 (2017).
Hanasaki, N., Inuzuka, T., Kanae, S. & Oki, T. An estimation of global virtual water flow and sources of water withdrawal for major crops and livestock products using a global hydrological model. J. Hydrol. 384, 232–244 (2010).
Google Scholar
Mekonnen, M. M. & Gerbens-Leenes, W. The water footprint of global food production. Water https://doi.org/10.3390/w12102696 (2020).
Google Scholar
Australian Water Markets Report: 2019-20 Review and 2020-21 Outlook (Aither, 2020); https://aither.com.au/wp-content/uploads/2020/08/2020-Water-Markets-Report.pdf
Grafton, R. Q. & Wheeler, S. A. Economics of water recovery in the Murray–Darling Basin, Australia. Annu. Rev. Resour. Econ. 10, 487–510 (2018).
Google Scholar
Moench, M. Water and the potential for social instability: livelihoods, migration and the building of society. Nat. Resour. Forum 26, 195–204 (2002).
Google Scholar
Water Markets in Australia: A Short History (National Water Commission, 2011).
Kundzewicz, Z. W. & Döll, P. Will groundwater ease freshwater stress under climate change? Hydrol. Sci. J. 54, 665–675 (2009).
Google Scholar
A Snapshot of the World’s Water Quality: Towards a Global Assessment (UNEP, 2016).
Summary Progress Update 2021: SDG 6 — Water and Sanitation for All (UN-Water, 2021).
GEMStat: Global Environmental Monitoring System, https://gemstat.org/ (UNEP, 2022).
Akhmouch, A. & Correia, F. N. The 12 OECD principles on water governance — when science meets policy. Util. Policy 43, 14–20 (2016).
Google Scholar
Lankford, B., Bakker, K., Zeitoun, M. & Conway, B. D. Water Security: Principles, Perspectives, and Practices (Routledge, 2013).
Potapov, P. et al. Global maps of cropland extent and change show accelerated cropland expansion in the twenty-first century. Nat. Food 3, 19 (2022).
Google Scholar
Fan, Y., Li, H. & Miguez-Macho, G. Global patterns of groundwater table depth. Science 339, 940–943 (2013).
Google Scholar
watch avatar the way of water full movie
watch avatar the way of water full movie
watch avatar the way of water full movie